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LARGE DEFORMATIONS, SUPERPOSED SMALL
DEFORMATIONS AND STABILITY OF ELASTIC RODS.

A. E. GlWEN, R. J. KNOPS and N. LAWS

University of Newcastle upon Tyne

Abstract-We give a theory for the small deformations superposed on the large deformation of an elastic rod.
We consider some aspects of material and geometrical symmetry and discuss the solution of some problems of
finite deformation. Also we discuss the stability of a straight rod which has been subjected to a large simple
extension.

1. INTRODUCIlON

STARTING with the general thermodynamical theory of elastic rods given by Green and
Laws [1], we develop a theory ofsmall deformations superposed on a large elastic deforma­
tion of the rod. We go on to discuss certain symmetries associated with an elastic rod and
obtain the reduced form of the constitutive equations in this case. It turns out that the
occurrence of these symmetries implies that one can obtain the general solutions of some
problems of finite deformation-this is analogous to the situation in the full three dimen­
sional theory of elasticity. We discuss the solution to the problem of the extension and
torsion of an initially straight rod and to the problem of the flexure of an initially straight
rod.

Next we give the complete set of equations governing the small displacement of a
straight rod subjected to a (large) simple extension. Here, we find that the equations separate
into four distinct groups, two concerned with flexure, one with torsion and one with
longitudinal extension. Also the temperature occurs only in the last of these groups.
This parallels the result of Green et ai. [2] in the linear theory of straight elastic rods.

We conclude the paper with a stability discussion. We consider the stability ofa straight
rod which has undergone a simple extension when the rod is simply supported or when the
rod is clamped at both ends. The critical values obtained for the compressive force in the
rod are, under some apparently reasonable assumptions, less than the values obtained
using the classical theory.

2. AN ELASTIC ROD

A rod is defined by Green and Laws [1] to be a curve c, embedded in Euclidean 3-space,
at each point of which there are two assigned directors. Let c be defined by

r = r(O, t), (2.1)

where r is the position vector, relative to a fixed origin, of a point on c and t denotes the
time. We regard () as a convected coordinate defining points on the curve. The initial
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position of c is denoted by ce. Also, let two directors A,. (a = 1,2) be assigned to every
point of'16'. The duals of A", at time t are denoted by a", and the motion of the rod is given by

r = r(B, f), a", = a",(B, f).

We define a3, A3 through

a3 = a3(B, t) = or/oB, A3 = a3(B,0),

and assume that

(2.2)

(2.3)

(2.4)

In the subsequent work we use a usual index notation in which Latin indices have the
values 1,2,3, Greek indices the values 1,2 and repeated indices are summed over the
appropriate range. It is, perhaps, worth remarking that Greek indices are not always
"tensor" indices.

In view of(2.4) we may define a set of reciprocal base vectors a i by

ai
. aj = ~},

where ~} is the Kronecker delta, and use the notation

(2.5)

(2.6)

Oai , .,
cB = Ki,a = Ki an

·r rs
Ki = a Kia' (2.7)

The local equation of mass conservation is

p.Ja3 3 = function of B = P(B), say,

where p is the mass per unit length of~. The equations of motion are

On IH p"cB+ps = r,

where the two vectors n'" are defined byt

n'" = iJp'"+ II..'"
cO P'I'

(2.8)

(2.9)

(2.10)

(2.11 )

In the preceding equations D is the force and p'" the director forces which constitute the
mechanical action in the rod. Also f is the assigned forcet per unit mass, q'" the difference
between the assigned director forcet and the director inertia terms and a superposed dot
denotes the material derivative with respect to t holding 0 fixed.

It is often more convenient to use the component form of the equations of motion.
Thus, if

(2.12)

t The vectors fC" used here are not the same as those used by Green and Laws [1].
: That is load plus body force.
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we see from (2.9) to (2.11) that

on i . . •
of) +K/n"+PI' = pc',

and

n"'fJ -nfJ'" +PyfJK;", - pYIIX / = 0,

nfJ3 +p"'3K/ _ p"'PK~3 - nil = O.

For an elastic rod, the Helmholtz free energy per unit mass, A, is given by

A = A(T, Y;j, (r",;, Aij , K"'i)'

where

557

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

A;j, K;j denote the initial values of a;j, Kij respectively, and T denotes the temperature.
Also

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

where S denotes the entropy per unit mass. In addition the residual energy equation is

where

pr- pTS - oh/oO = 0, (2.23)

(2.24)

r is the heat supply function per unit mass per unit time, and h is the flux of heat along
(; per unit time. In evaluating the right hand sides of (2.18) to (2.22), A is to be regarded as
a function of }'P3' }'33' 1(y",p +"p",). Finally the constitutive equation for h is

h = h(T, "ii' 0'",;, Aij' K",;, oT/oO), (2.25)

and provided h is a continuous function of oT/of) in the neighbourhood of oT/oO = 0, we
may show from (2.24) that

h = 0 whenever aT/aO = 0.• (2.26)
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3. SMALL DEFORMATION SUPERPOSED ON A LARGE DEFORMATION

We consider three configurations of the rod: the initial configuration with the position
of the curve rc and the directors denoted by A.«, the first deformed configuration where the
curve is denoted by rc and the directors by ~, the final configuration in which the curve is
denoted by c and the directors by a«. In the initial configuration we specify the curve rc by

R = R(e), (3.1)

and assume that, in this configuration, the rod is in equilibrium at uniform temperature
To and entropy So. We also assume that the first deformed configuration is one of equili­
brium at uniform temperature T1 and entropy S1, and that rc is specified by

R = R(e). (3.2)

The final configuration is obtained by a subsequent small deformation with the curve c

given by

r = r(e, t) = R(O)+ eu(O, t),

and the directors a« are determined by

a« = a«(O, t) = A«(O)+eb«(O, t).

(3.3)

(3.4)

where e is a small real parameter. Hence the displacements and director displacements,
from the first to the second deformed configuration are eu, eb« respectively. In the following
analysis, powers of e above the first will be neglected-except in the free energy A.

From (2.3), (3.3) and (3.4) we observe that

(3.5)

We shall denote the quantities occurring in (2.6) and (2.7) which refer to the initial unde­
formed configuration by majuscules with a superposed bar, for example Kij. Also those
kinematic quantities which refer to the first deformed configuration will be denoted by
majuscules, for example A jj • Using this notation we have, from (2.5), (2.6), (2.7) and (2.17)

(3.6)

where

(3.7)

and

(3.8)

Also

(3.9)

and, recalling (2.17),

(3.10)
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In addition

where
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

We suppose that the values of n. p" and n" in the first deformed configuration are
N, P" and ll" and write

n = N+ev, p" = P"+/:;", n" = ll"+s1D" (3.16)

Also the assigned forces f and director forces I" are assumed to be of the form

so that if
f = F+ef', (3.17)

then

(3.18)

Q" = L", q'" = 1'''-y"Pb/h (3.19)

since the first deformed configuration is one of equilibrium.
From (2.9) to (2.11) and (3.16) to (3.19) we obtain the following equations of equilibrium

of the first deformed configuration:

with

oN
00 +pF = O. (3.20)

(3.21)

(3.22)
oF"

ll" =7iO+ fJL".

We also obtain the equations of motion for the subsequent sman deformation in the form

~+ Pf' = fJti, (3.23)

oA ob
00" x;"+A3 xv+A.. x1D"+ 00 xP"+b3 x N+b" xll" = O. (3.24)
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(3.25)

Next, we wish to determine the component form of the equations of equilibrium (3.20) to
(3.22) and the equations of motion (3.23) to (3.25). If

n«i = n« . Ai, m«i = m« '. Ai, ~«i = P« . Ai,} (3.26)

Vi = V . Ai, ~«l = ;« . A',

then from (2.12), (3.9), (3.16) and (3.26) we find that

n«i = n«i +e(m«i - btni1lt),

ni = Ni+e(vi-biiNk
),

p«i = p«i +e(~«i _ btpi1lt).

(3.27)

(3.28)

(3.29)

With the help of these results, we may show from (3.20) to (3.22), or (2.13) to (2.15), that

°O~i+K~iNr+pFi = 0, (3.30)

n«/I-n/l«+py/lK'«-PY«K'/I = °
y y'

n/l3+p«3K!-P«/lK/-N/I = 0,

where, from (2.11) and (3.19)

Also the equations of motion (3.23) to (3.25), or (2.13) to (2.15), yield

m«/I - m/I« - b'/ln«r+b'«n/lr+Py/l ,,'« - Py«,,'/I
r r ",y"'y

+ K~«(~Y/l - b/pyr) - K!(~y« - b~«pyr) = 0,

m/l3 -b/n/ir -v/l+b/N' +K!(~«3_b/p«r)

+J1.!p«3 - K/(~«fJ - b!p«r) - J1.~3 p«fJ = 0,

where

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)



Large deformations and stability of elastic rods 561

Finally we put

T = Tl +sT', S = SI +SS', r = R+l:r', h = R +I:h'. (3.40)

With the help of the results ofthis section we can now deduce the constitutive equations
for the two deformed configurations of the rod. For the first deformed configuration, we
find from (2.18) to (2.22) that

N3_P«:lK3 = 2{3 oA
<I or

33
'

NP - p«3KP = {3 oA
<I or'P3

TI<lP+TIP<I-PYPK<I-pY<lKP = 4{3 oA
Y Y or<lp'

p«i = (3 oA ,
ar.<li

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
oA

SI = -oT
l

'

where A is to be evaluated at this configuration. Also the energy equation reduces to

(3R-oR/of) = O. (3.46)

But, since this first deformed configuration is one of uniform temperature Tl , we see from
(2.26) that R = 0, and hence

oR/of) = O.

Also (3.46) shows that for this configuration to be possible we need

R =0.

The constitutive equations for the infinitesimal increments are found to be

(3.47)

(3.48)

02A 02A 02A
= 4{3 On3 b33 + 2{3 orP30r33 (bp3 + b3P)+2{3 or<lpor33 (b<l/l+ bp<I) (3.49)

02A 02A
+2f3 Or.<liOr33 A<li+ 2{3 oT

l
or33 T',

vP- b!N' - K!(e<l3 - b~3P«') - p<l3J-l!
02A 02A 02A

= 2{3Or
33

0r
p3

b33 +{3or or (b<l3+ b3<1)+{3or. or (bAI'+bI'A) (3.50)
<13 P3 AI' P3

02A 02A
+ f3 or. .or A<li+ {3 oT, or T',

<II P3 1 P3
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- K~~(~YP - b!PY')- K!(C~- b~~PY')

a2A a2A a2A
= 8{3ar ar b33 +4{3ar. ar (bA3+b3;.)+4f3ar ar (b;.,.+b,.;.)

33 ~P A3 ~P A,. ~P

a2A o2A
+4{3 OL .ar AYi+ 4f3 aT ar T',

Y' ~P 1 ~P

):~i b'ip~' 2f3 a
2

A b f3 a
2
A (b b)

.. -, = ar aL. 33 + ar ~L. P3 + 3P
33 ~I P3 U ~I

a2A a2A a2A
+{3 or aL .(b;.,.+b,.;.)+ {3 aL aL .Ap,+ {3 aT aL .T',

A,. ~, p, /I' 1 III

a2A a2A
s' = - 2ar ar, b33 (b b)

33 1 orP30Tl P3 + 3P

a2A a2A a2A
ar aT (bll/l+bp~) aL .aT Alli- ~T2 T',

liP 1 ~I 1 U 1

(3.51 )

(3.52)

(3.53)

where A is to be evaluated at the first deformed configuration. Also the energy equation is

where, in view of (2.24),

{3r' - (3T1S'- ah'/ae = 0,

h' = flaT/ae,

(3.54)

(3.55)

and fl depends upon the first deformed configuration. We do not write down the rather long
expression for the free energy of the final deformed configuration of the rod.

This completes the general theory. We note that the preceding theory includes, rather
trivially, the case of infinitesimal deformations of an elastic rod which is initially curved,
force-free and at uniform temperature and entropy. The resulting equations, for the case
of an initially straight rod, reduce to those of Green, Laws and Naghdi [2].

4. SYMMETRIES

It is well known that in the three dimensional theory of elasticity, there are relatively
few solutions ofthe equilibrium equations for arbitrary free energy. However, if one intro­
duces some symmetry restrictions upon the possible forms of the free energy then much
more progress can be made. The same situation holds in the theory of elastic rods.

We consider, in the general theory, the free energy given by (2.16) but assume that A
does not depend upon Aij and K.~i' Thus

A = A(T, }'ij, O'lli)' (4.1)

We assume that the Helmholtz function (4.1) is invariant under the transformations

8 2 -+ ±82 , (4.2)
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where we may take any combination of + and -. The first transformation implies that

(4.3)

and with the second and third transformations we must associate

(4.4)

respectively. A straightforward, but rather tedious, calculation shows that if A is a poly­
nomial then it must reduce to a polynomial in T and the following 45 invariants

1'11,1'22,1'33' I'i2' I'~3' }'i3' 1'121'131'23,

CTi I' CT 11 CT22, CT~ 2, CTi 2, CT 12CT21, CT~ I , CTi 3' CT~ 3 ,

(4.5)

The kinetic energy of the rod is

(4.6)

per unit mass and we demand that this is also invariant under the static transformations
(4.2). Hence

(4.7)

5. LARGE DEFORMATION OF AN INmALLY STRAIGHT ROD

In the first problem considered here, the initial curve rc and the curve rc are straight
lines. We choose the directors A~, which are associated with rc, and the convected coordinate°so that Ai are a set of orthonormal vectors which are independent of 0. Hence

Kij =0. (5.1)

We assume that the first deformed configuration of the rod is given by

Al = A,IAI_cos.",o + A, IA2_sin "'0, }
A2 = -A,2AI SID "'0 +A,2A2 cos "'0,
R = A,3R = A,30A3,

(5.2)
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where AI' A2' A3 and t/J are constants. The above deformation consists of (finite) extension
and torsion. It follows that

A 22 = Aj, A33 = Ai, }

A ij = 0, i :1= j,
(5.3)

and hence

Also

r 22 = Aj-1,

rij = 0, i :1= j.

r" ~ 11-1,}
(5.4)

K 11 = K 22 = K 33 = K 13 = K 23 = °
K 12 = -K21 = AIA2t/J, Kl = ~:' Kl = -Ai;' (5.5)

and the only non-zero :Eij are

:E 12 = -:E21 = AIA2t/J·

If the density of the initial rod is p, then from (2,8) we have

(5.6)

(5.7)

We assume that the free energy of the rod is given by (4.5) and that the rod is initially
homogeneous. Hence from (3.41) to (3.44) we have

N 3 = 213 oA ,
Or33

(5,8)

pii = p22 = pI3 = p23 = 0, (5.9)

pl2 = fJ oA, p21 = 13 vA (5.10)
O:E 12 V:E21 '

n ll = p 2I K"1 +213 oA (5.11)
2 OrII '

n 22 = p12K"2 + 213 vA (5.12)
1 vr

22
'

n 12 +n21 = 0, (5.13)

and N 3, p12, p2I, n ll , n22, (n 12 +n21) are constant. The equations of equilibrium (3.30)
are satisfied with zero body force and (3.31) and (3.32) yield

n ll3 = 0, (5.14)

and therefore, with the help of (5.13),

n l2 = n 21 = 0. (5.15)
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(5.17)

(5.16)

or

In the absence of body forces, we deduce from (3.33), (5.11) and (5.12) that

K'l(p12_p21) = 2{3 aA
2 arll '

K 2(p21_P12) = 2f3 aA1 ar22'
}

~~ (a~~l - a~~J = 2 a~~l' }

A11/1(aA aA)_2aA
;:;- al:21 - al: 12 - ar22 '

If we are given A3 and 1/1 then (5.17) provides two equations for the determination of A1
and A2' We remark that without prior knowledge ofthe function A, we are unable to decide
whether (5.17) has solutions, a unique solution or no solutions.

In the special case when there is no twist
1/1=0

and in addition to (5.8), (5.9), (5.14) and (5.15) we obtain

nIl = n22 = p12 = p21 = o.
Also, in place of (5.17) we find that

(5.18)

(5.19)
aA _ aA _ 0

ar11 - ar22 - ,

which are two equations for the determination of A1 and A2 when A3 is given.
The second problem discussed here is concerned with the finite extension and flexure

ofan initially straight rod. We take the initial curve ~ to be a straight line and the deformed
curve ~ to be the arc of a circle of radius b. We again choose the directors A.. and the
convected coordinate () so that

K jj = o. (5.20)

(5.21)

In this problem, we assume that the first deformed configuration ofthe rod is given by

R = bA3sin </>-bA1(l-cos eM (</> = A3()/b),

A1 = A1A1 cos </> +A1A3 sin </>,

A2 = A2A2'

A3 = A3A3 cos </> - A3A1 sin </>,

where A1' A2' A3 and b are constants. The deformation specified by (5.21) consists of uniform
extension (with extension ratios A1, A2' A3) together with pure flexure in a plane normal
to A2 • It is a straightforward matter to verify that

A33 = At }
r ll =Ar-1, r22=A~-1, r33=A~-l,

Aij = Cj = 0, i :F j.

(5.22)
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Also the only non-zero components of Kij and I:.ii are

(5.23)

If the initial density is ii, then we again recover (5.7). By assuming that the rod has the
symmetries discussed in section 4 and that the rod is initially homogeneous, we obtain
from (3.41) to (3.44) and (4.5) the following results:

pl1 = p22 = p12 = p21 = pH = 0, (5.24)

(5.25)

(5.26)

(5.27)

(5.28)

With the help of (5.23), (5.24) and (5.26) we find from (3.33) that in the absence of body
forces

n"i = 0 otherwise. (5.29)

Also the equations of motion (3.30) to (3.32) indicate that we need

N 3 = 0 when K;t :F O.

Thus, from (5.26), (5.27), (5.29) and (5.30) we must have

At oA oA
b aI:.13 +2 Or

33
= 0,

2 aA + A~ aA _ 0
ar lt AtbaI:. 13 -'

oA
ar

22
= 0,

(5.30)

(5.31)

in order that the deformation (5.21) be possible. Equations (5.31) provide three equations
to determine the three quantities At, A2' A3 in terms of b. We again note that since we do
not know the form ofthe function A, we cannot make a definitive statement about solutions
of (5.31).

We note that it is not possible to obtain the solution for simple extension directly from
the preceding calculation. The reason is that we need to know that Ki :F 0 to obtain
(5.30) and certainly Kl = 0 in simple extension.
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6. SMALL DEFORMATION SUPERPOSED ON SIMPLE EXTENSION
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We use the results of the preceding section to discuss the small deformations of a rod
under simple extension. For the first deformed configuration the relevant formulae are

Ku = 0, '£ij = 0,

r 11' r 22, r 33 constant,

Au = rij = 0, i =F j.

(6.1)

In the first place we write down the explicit form of the constitutive equations for the
superposed small deformation and in doing so it is convenient to introduce the notation

a2A
kl = fJ arIi'

alA
k4 = 4fJarlr

alA
k7 = 2fJar11ar11'

alA
k lO = fJa'£r I '

a2A
kI3 = fJ a'£~t'

alA
k l6 = {J 0'£I3'

olA

k l9 = fJ oTlar11'

a2 A
kl = fJ ar

2
f

a2 A
k s = {Jarlf

ks 2fJ 0
2
A

ar11ar33 '

(FA
k11 = {J O'£~l'

alA
k l4 = 2{J 0'£ 12a'£21 '

olA
k l7 = 2{J 0'£11 0'£21'

a2A
klO = fJ aTtar33'

alA
k3 = {J ar

3
f

olA
k6 = fJ ard'

alA
k9 = 2{Jar220r33 '

alA
k12 = {J O'£Il'

alA
k ts =Pa'£~3'

a2A
kls = (J oTtor11'

alA
k21 = PaTr

(6.2)

where A is to be evaluated at the configuration (6.1). We observe that all the second deriva­
tives of A, except those listed above, vanish at the configuration (6.1) when A is given by
(4.5). With the help of (6.1) and (6.2), we obtain from (3.36), (3.37) and (3.49) to (3.53)

ml3 = vl -bi t N 3 = k6(b 13 +b31 ),

m13 = v1-bi2N3 = ks(b13+b32)'

v3-blN3
= 2ksb11 +2k9b;z;z+4k3b33+2klOT', }

mil = 4k.bu +2k7b22+2ksb33+2k18T',

m21 = 2k7bu +4kzb;z1 +2k9b33 +2kI9 T',

(6.3)

(6.4)

(6.5)

(6.6)
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If we put
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ell = k10,1,1l +tk l1,1,22 , }
(6.7)

ell = tk 17,1,ll +k ll ,1,22 ,

e12
= k12 A. 12 +!k I4A.21' }

(6.8)e2l = tk I4A.12 +k I3 A.21'

~13 = k I6A.13' (6.9)

~23 = k IS A.23' (6.10)

S' = -(k21/P)T' -2(k IS /P)b ll -2(k I9/P)b 22 -2(k20/P)b 33 • (6.11)

(6.12)

then we find from (3.39) and (4.7) that

mlli = 00~;i + pq'«i,

a2b· i

q,yi = pi _ a. __1 ()' not summed).
y at2

Also the equations of motion (3.35) reduce to

avi . 02Ui

ae +pf" = Pat2 .

To help in the interpretation of these equations we recall from section 3 that

au·
b3i = a~'

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

since the quantities Aij are independent of e.
Inspection of the equations for the small deformation shows that they separate into

four distinct groups, two concerned with flexure, one with torsion and one with longitudinal
extension. Also the temperature occurs only in the last of these groups. We collect the
relevant groups of equations below.

We consider flexure of the rod in the plane normal to AI' The equations are

av
2

p:r'2 = P 22 a2U2
ae + A at2'

w23 = v2_A22b N 3 = O~23+p(1'23_a. A3302b23)
32 ae 2 al2'

v2 -A22 N 3b32 = k s(b 23 +b32 ),

):23 _ k ab23
~ - IS ae '

(6.19)

(6.20)

(6.21)
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A similar set of equations determine the flexure of the rod in a plane normal to A2 . Upon
elimination of y2 and e23 , equations (6.18) yield the following pair of equations:

(k +A22N3)a2u2+k ab23 + Pf,2 = RA22a2u2 }
5 Ofj2 5 ae I' at2 '

(6.22)
k a

2
b23 k b '23 aU2 33 a

2
b23

15 ae2 - 5 23 +{3i - k5aii = {3a.2 A --ail.

It should be emphasized that k5, k15 and N 3 depend upon All' A 22 and A33 . However,
if we use the technique of Green [3] we may regard the initial configuration and the first
deformed configuration to be coincident. Then the preceding work still yields a small
deformation theory in the presence of initial forces. In such a theory k 1... k21 are constants,
but we do not have any means of calculating the initial forces in the rod.

It is, perhaps, of interest to note that the classical equation for the "Euler strut" may be
obtained as a special case of this theory. First we recall that the theory of the Euler strut
requires that the initial force in the rod be prescribed. We therefore use the idea mentioned
in the preceding paragraph to obtain the relevant equation when the initial force is obtained
"without deformation". In this case there is no loss of generality in taking

All = A 22 = A 33 = 1.

To recover the classical theory we let

(b23 +bn) ~ 0, k5 ~ 00, a.2 = 0, (6.23)

with (y2 - A 22b32 N 3) not being determined by the constitutive equation (6.20). In the
absence of body forces and director body forces, equations (6.18), (6.19), (6.20) and (6.23)
yield the following equation for U2 :

a4U2 3 a2U2 a2U2
k 15 a()4 - N ae2 +(3 at2 = O. (6.24)

This is the usual equation for the Euler strut.
Next, we consider the torsional motion of the rod. The equations are:

ro 12 = ro21 = k4 (b 12 +b21 ),

;:12 _ k ab 12 1k ab21
.. - 12 ae +1" 14 ae '

21 .1 abl2 ab21e = -Zk14M+k13M'

ro 12 = ae 12 + Rl'12_ Ra. A22a2b12
ae I' I' 1 at2'

ro21 = ae
21

+R1'21_{3a. Alla2b21
ae I' 2 at2·

(6.25)

These equations are of the same form as those obtained for rods without initial force by
Green et ai. [2], but here the coefficients k4, k 12 , k 13 , k 14 depend upon All' A22 , A33 ·
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Finally we examine the equations for extensional motion of the rod:

iJv
3

RP3 = {3A 33 02U3

iJO + f'J ot2 '

ml1 = 0;11 +{31'11_{3a: All02bll
00 1 ot2 '

m22 = 0~22 +{31'22-{3a: An02b22
00 2 ot2 '

v3 - A 33b33 N 3 = 2ksb 11 + 2kg bn +4k3b33 + 2k20 T',

mll = 4k 1b 11 +2k7b22+2ksb33+2klST',

m22 = 2k7bll +4k2b22 +2kgb33 +2k19T',

;::11 _ k ob 11 lk obn
.. - 10 00 +~ 17 00 '

;::22 _ lk Ob 11 k ob22
.. - ~ 17 00 + 11 00 '

OU3
b33 = iii}'

(6.26)

Again, we note that these equations are of the same form as the corresponding equations
of Green et al. (2].

7. STABILITY

The treatment of stability adopted here is based upon Liapounov's second method as
extended to continuous systems by Movchan (4], Knops and Wilkes (5] and Gilbert and
Knops (6]. The concept ofstability is dynamic and roughly envisages that the system under
examination is given an arbitrarily small perturbation at some definite instant. The mag­
nitude, in an appropriate sense, of the subsequent disturbance, due to the initial pertur­
bation, is used in the classification of stability or instability. Precise meanings are given to
the magnitudes of the initial and subsequent disturbances by employing positive-definite
functions Po P respectively. In general, different functions are used for P. and p.

In order to give a definition of stability further ingredients are required. A time interval
9; must be prescribed at an instant ofwhich the system is allowed to be initially disturbed.
A second time interval :!i must also be prescribed during which the subsequent motion is
examined for stability. In the situations considered here, both 9; and :T are the intervals
(0, 00), and the same results are obtained irrespective of when the system is initially dis­
turbed. It is important to note that the initial disturbance is given to the system at one, and
only one instant chosen from 9;, whereas the subsequent motion is examined at all in­
stants of :T.
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Let the solution of the differential equations considered be denoted by the function ljJ.
The function ljJ is defined on ff and its values belong to some set X. Also let the initial value
satisfied by a solution ljJ be denoted by ljJ(or), where ljJ(or) belongs to some set Xt and or E f/;.
Then at a time t later, the value of the solution is ljJ(or+t), tEff, rEf/;. We assume that
ljJ(or + t) is in X, and that

lim ljJ(or + t) = ljJ(or).
t .... O

We write

ljJt(t) = ljJ(or + t) tEff,

and observe that the function ljJt is merely the translate of ljJ.
In this paper we are only concerned with the stability of the null solution of the system.

Accordingly we only give a definition of stability of the null solution which is as follows:
The null solution is stable, if for each rEf/; and e > 0, there exists £5(e, or) > 0 such that

implies

pJljJ(r» < £5,

sup p(ljJJt)) < e,
tE~

ljJ(or) E X"

t E ff, ljJt(t) E X.

This definition is due to Movchan [4]. We note that the above definition has been generalised
by Gilbert and Knops [6] and that the latter authors have related the whole concept of
stability to that of continuity. When £5(e, r) is independent of r the stability is said to be uni­
form. It is evident from the definition that stability depends critically upon the explicit
measures taken for Pt and p. Indeed, it is possible for the null solution to be stable with
respect to one pair of measures Pt, P, and unstable with respect to a different pair.

It is often convenient to establish necessary and sufficient conditions for stability by
means ofa theorem analogous to the classical theorem of Liapounov. This theorem requires
the introduction of a third set of positive-definite functions Ft,t and is as follows: The
null solution is stable if and only if for each t E ff, rEf/; there exists a positive definite
function Ft,t defined on X for which

(i) given e > 0, there exists £5(e, or) > 0 such that

pJljJ(r» < £5 implies Ft,o(ljJ(r» < e,

(ii) Ft,t(ljJ.(t» is non-increasing with respect to t,

(iii) given 1] > 0, there exists ~(1], or) > 0 such that

sup FtiljJ.(t» < ~ implies sup p(ljJt(t» < 1].
tE~ tE~

(7.1)

The above theorem has the corollary that the null solution is uniformly stable if and only
if the conditions (i) and (ii) hold uniformly in r.

A proof of this theorem and corollary have been given by Movchan [4] and Gilbert
and Knops [6]. The latter work proves a more general result than that given above and
imposes less restrictions than are required by Movchan [4].

We observe that when the system is stable two immediate candidates for Ft,t are

sup p(ljJt(s», sup Ft,.(ljJt(s)), S, t E .~. (7.2)
s~t s~t
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Hence condition (ii) enforces boundedness assumptions such as

(7.3)

For practical purposes, it is often better to express condition (i) in the equivalent form

(7.4)

where CI is a positive constant, and condition (ii) in the equivalent form

(7.5)

(7.7)

where C2 is a positive constant.
We now turn our attention to an explicit problem. We consider the stability of the

initially straight rod which has been subjected to a simple extension and so we may use
the results of section 6. As we have already remarked, the equations governing the small
deformations of the rod separate into four distinct groups. In the remainder of this paper
we shall only consider one of the groups of equations (6.22) which govern the (small)
flexural vibrations in a plane normal to AI' Thus we shall permit only those initial per­
turbations which give rise to such flexural vibrations. However, the method indicated
here can be readily applied to the remaining groups of equations and yield a complete
stability analysis. We study the flexure problem because of the fair amount of interest in
this problem in the framework of the classical Bernoulli-Euler rod theory.

If the body forces and director body forces are zero, we have, from (6.22), the two
equations which govern the flexural vibrations:

22 3 a
2
u k ab 22 a

2
u (

(ks+A N )002+ Sao = (3A 7Jt2' 7.6)

a2b au a2b
kISa02-ksb-ksao = {3a2 A33 at2'

where, for simplicity, we have put

(7.8)

We suppose that the rod is determined by 0 $,; 0 $,; I and put

() = lx,

klS = "12
k

s
.. ,

{3A 22 m
T=p'

For the rest of this paper we assume thatt

u = lv,

A 22 N 3 ,{2
~=-f'

{3a2 A33
= n.

ks

(7.9)

e> 0, m >0, n>O (7.1 0)

t We note that N 3 is positive for tension, negative for compression.



Large deformations and stability of elastic rods 573

and that A. is real. Equations (7.6) and (7.7) now assume the more compact form

OlV ob 02V
(l-eA.l)oxl+ox=mot2' (7.11)

02b OV 02beoxl -b-ox = n ot2 ' (7.12)

We examine the stability of the null solution v == 0, b == 0 when the rod is subject to
one set of the boundary conditions

(a)

(b)

v(0, t) = b(O, t) = 0,

ob
v(O, t) = ox (0, t) = 0,

v(1, t) = b(l, t) = 0,

ob
v(l,t) ox(l,t) =0.

(7.13a)

(7.13b)

The boundary conditions (7.13a) are appropriate to a rod which is clamped at both ends,
and (7.13b) are relevant to a rod which is simply supported at both ends. We notice that as
a consequence of the differential equations (7.11), (7.12) and either set of boundary con­
ditions (7.13), the total energy functional

E(t) = f{ ~(~~r +b
2
+(I-eA.

l)(::r+2b:: +m(~;)l+n(~~r} dx

does not vary in time, so that

E(t) = E(O).

(7.14)

In this application we take X to be the set of all real-valued functions, defined on the
interval [0, 1] which are continuous together with their first and second derivatives. We let
.r. = .~ = [0, (0) and arbitrarily take r = O. It is readily seen that the subsequent con­
clusions are valid irrespective of the value of r, so there is no loss of generality in assuming
r = O. Also we take the measure of the initial perturbation, p" to be

p.(q,(r) = E(O)t.

We shall consider two choices of the subsequent disturbance, but in each case we shall
use the functionalt E(t)t to establish stability. The conditions of the stability theorem then
demand that E(t) < 00. Since the constant functional E(t)t is equal to the initial measure
p.(q,(r», the only condition of the stability theorem still to be satisfied is (7.5).

To carry out a detailed investigation we need some inequalities. First we consider the
minimum of the functional

(7.15)

forfunctions f, g E X satisfying (7.13a) or (7.13b), Le.

j(O, t) = j(l, t) = g(O, t) = g(l, t) = 0,

or
oj oj
ox (0, t) = ox(l, t) = g(O, t) = g(l, t) = O.

t That is, we shall put F•.•(IjJJt» = E(l)!,
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If the minimum is denoted by ~k2, then for either set of boundary conditions we may show
that the minimizing functions Jo, go satisfy

~o% -Jo- ogo = 0 }ox2 ax '
(7.16)

(1- ~k2)02go +oJo = o.
ox2 ax

We note that these equations are the static counterparts of (7.11) and (7.12). From (7.16)
it is straightforward to show for clamped ends, (7.13a), that k is the smallest positive root of

2 h2 h h I. 2
k = 1+~h2' tan 2 = 2/(1 +~h ), (7.17a)

whereas for simply supported ends, (7.13b), that

(7.17b)

(7.18)

Thus for functions b, v E X we have

f{(b+::r+~(:~r} dx ~ ~k2L1 (::f dx,

where k is given by (7.17a) for clamped ends and by (7.17b) for simply supported ends.
Also we need the resultt that for any functionJ E X such thatJ(x, t) = 0 for some x E [0,1],

[1(a:)2dX~ sup IJ(x,t)12.Jo uX 0';;"'$ 1
(7.19)

Consider now the case (7.13a) when the rod has clamped ends. From (7.10), (7.14) and
(7.18) we have

E(t) ~ f {~(:~r+(b+::r-02(::f} dx

~ f ~(k2 - A2) (::) 2 dx,

where k is given by (7.17a). Thus provided

we obtain from (7.13a), (7.19) and (7.21)

E(t)t ~ Wk 2 - A2)]t sup lV(x, t)l.
0,;;",,;;1

(7.20)

(7.21)

(7.22)

(7.23)

We have therefore established stability (in fact, uniform stability) with respect to the
measures E(O)t and suplvl provided (7.10) and (7.22) hold. Again, we have from (7.10),

t For a proof see for example Knops and Wilkes (5).
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(7.13a), (7.14), (7.18) and (7.22)

fl k2 ..l2{( av) 2 (ab) 2}
E(t) 2: 0 -p- b+ ox +e ox dx

fl k2_..l2(Ob)2
2: 0 e-p- ox dx

and with the help of(7.19) we get

E(t)t 2: [e(k2k~..l2)Jt sup Ib(x, t)l.
O';;x,;;1

575

(7.24)

(7.25)

Thus we have established uniform stability with respect to E(O)t and sUPlbl under the same
set of restrictions (7.10) and (7.21). We remark that we have shown that the rod is stable
as long as (7.10) and (7.21) hold. This does not imply that if one or other ofthese conditions
is violated then the rod is unstable.

Let us now discuss the case when the rod is simply supported so that boundary condi­
tions (7.13b) hold. It is clear that we can repeat the calculation which starts at (7.20) and
ends at (7.23) to establish uniform stability with respect to suplvl. The only change is that
in this case k is given by (7.17b), and the stability condition becomes

(7.26)

However, when we try to repeat the steps (7.24) to (7.25) we find that we are unable to do
so, for in this case we cannot use (7.19) since b does not necessarily vanish for any x E [0,1].
Instead we proceed as follows: From (7.24)

fl k2 ..l2{ a ( fl )}2
= 0 e-p- ox b- 0 bdx dx.

Since, b - gb dx vanishes at least once for x E [0, 1] we may use (7.19) to obtain

But f~ b dx is independent of x and so

O~~~llb(x,t)l::;; {e(pk~..l2)E(t)r+/L bdxl

::;; {e(k2k~..l2/(t)r +{f b
2
dxf, (7.27)

where we have used Schwartz's inequality. Inspection of (7.27) shows that if we can prove
that E(t) is bounded below by f~b2 dx then we may establish stability with respect to
suplbl. Of course, we would then incidentally have proved stability with respect to f~ b2 dx.
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To demonstrate the required result we consider the minimum of the functional

for functions f, g E X satisfying

of of
ox(O, t) = ox(l, t) = 0, g(O, t) = g(1, t) = 0.

Note that (7.26) implies that (1- eA.2) is positive. Denoting the minimum by eK2, it may be
shown in the usual way that the minimizing functions fo, go satisfy

0% (2 1) ogo
e ox2 + eK -1-02 fo-a;=O,

1 ofo 02go
1-02 ox + ox2 = 0,

and hence that

2 . {J: 2 1 }eK =mm <,7t'1_02 '

We therefore have the result that for functions b, v E X, satisfying (7.13b),

f {(1-02)(I_
b
0 2+;:r +e(:~r} dx ~ eK

2f b
2

dx.

Now return to (7.14) to see that

which, with the help of (7.28), gives

E(t) ~ f e( K
2
-1 ~;A.2)b2dx.

But (7.10) and (7.28) imply that

e(K
2

- 1~;A.2) > 0,

so from (7.27) and (7.30) we find that

sup Ib(x, t)1 ~ cE(t)t,
O,;;x,;;l

(7.28)

(7.29)

(7.30)

where c is a positive constant. Thus provided (7.10) and (7.26) are satisfied we may conclude
uniform stability with respect to E(O)t and sUPlbl.

In the interpretation of the inequalities (7.10), (7.22) and (7.26) it must be remembered
that k s,k1S and N 3 are derived from the energy function, and hence depend upon All,
A 22

, A 33
• In the special case, mentioned in section 6, when we regard the initial force to be

obtained "without deformation" some explicit results may be stated since k s and k 1S
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(7.32)

(7.33)

(7.34)

are constants. For this case there is no loss ofgenerality in taking All = A22 = A 33 = 1, so
we do. Also we make the reasonable assumptionst that

P> 0, 1X2 > 0, N 3 < 0; (7.31)

then the inequalities (7.10) become

ks > 0, k 15 > O.

Granted (7.31) and (7.32), the stability condition for clamped ends is

k2

_N3 < k1Sp'

where k is the smallest positive root of(7.17a), and the condition for simply supported ends
IS

N 3 ksklS1t2
- < 2 2'ksl +k1S1t

We remarked in section 6 that the usual equations for the Euler strut could be obtained
as a special case of our more general theory. Roughly, the classical theory is obtained by
letting k s -+ 00 in the case when the initial force is obtained "without deformation".
It is quite straightforward to obtain the critical loads in this case from (7.33) and (7.34)
and it may be shown that the critical values obtained in the general development are smaller
than the critical values corresponding to the classical theory.
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A6cTpaKT-.IJ:aeTcli TeopHli ):l.1IlI ManblX nepeMemeHHlt, HaKJla,lJ;blBaeMblX H3 60JlbWoe nepeMemeHHe
ynpyl'Oro CTepXHlI. 06cYlIC,lJ;aIOTCli HeKOTopble BH,lJ;bl CHMMeTpHH MaTepHaJIa H reOMeTpH'IecKoit cHMMeTpHH.
nOJlY'IaeTCli peweHHe HeKOTOblX Ja,lJ;a'l B KOHe'lHbIX nepeMemeHHlIX. 06cyllC,lJ;aeTClI TaKKe YCTOlt'lHBOCTb
npliMoro CTepllCHlI, nO,ll.OOpllCeHHoro npocTOMY 60JlbWOMY y):l.1lHHHeHHlO,

t Recall that N 3 < 0 implies that the rod is under compression.


